Publications

2021

Stauber, Jacob, John M Greally, and Ulrich Steidl. (2021) 2021. “Preleukemic and Leukemic Evolution at the Stem Cell Level.”. Blood 137 (8): 1013-18. https://doi.org/10.1182/blood.2019004397.

Hematological malignancies are an aggregate of diverse populations of cells that arise following a complex process of clonal evolution and selection. Recent approaches have facilitated the study of clonal populations and their evolution over time across multiple phenotypic cell populations. In this review, we present current concepts on the role of clonal evolution in leukemic initiation, disease progression, and relapse. We highlight recent advances and unanswered questions about the contribution of the hematopoietic stem cell population to these processes.

Odgis, Jacqueline A, Katie M Gallagher, Sabrina A Suckiel, Katherine E Donohue, Michelle A Ramos, Nicole R Kelly, Gabrielle Bertier, et al. (2021) 2021. “The NYCKidSeq Project: Study Protocol for a Randomized Controlled Trial Incorporating Genomics into the Clinical Care of Diverse New York City Children.”. Trials 22 (1): 56. https://doi.org/10.1186/s13063-020-04953-4.

BACKGROUND: Increasingly, genomics is informing clinical practice, but challenges remain for medical professionals lacking genetics expertise, and in access to and clinical utility of genomic testing for minority and underrepresented populations. The latter is a particularly pernicious problem due to the historical lack of inclusion of racially and ethnically diverse populations in genomic research and genomic medicine. A further challenge is the rapidly changing landscape of genetic tests and considerations of cost, interpretation, and diagnostic yield for emerging modalities like whole-genome sequencing.

METHODS: The NYCKidSeq project is a randomized controlled trial recruiting 1130 children and young adults predominantly from Harlem and the Bronx with suspected genetic disorders in three disease categories: neurologic, cardiovascular, and immunologic. Two clinical genetic tests will be performed for each participant, either proband, duo, or trio whole-genome sequencing (depending on sample availability) and proband targeted gene panels. Clinical utility, cost, and diagnostic yield of both testing modalities will be assessed. This study will evaluate the use of a novel, digital platform (GUÍA) to digitize the return of genomic results experience and improve participant understanding for English- and Spanish-speaking families. Surveys will collect data at three study visits: baseline (0 months), result disclosure visit (ROR1, + 3 months), and follow-up visit (ROR2, + 9 months). Outcomes will assess parental understanding of and attitudes toward receiving genomic results for their child and behavioral, psychological, and social impact of results. We will also conduct a pilot study to assess a digital tool called GenomeDiver designed to enhance communication between clinicians and genetic testing labs. We will evaluate GenomeDiver's ability to increase the diagnostic yield compared to standard practices, improve clinician's ability to perform targeted reverse phenotyping, and increase the efficiency of genetic testing lab personnel.

DISCUSSION: The NYCKidSeq project will contribute to the innovations and best practices in communicating genomic test results to diverse populations. This work will inform strategies for implementing genomic medicine in health systems serving diverse populations using methods that are clinically useful, technologically savvy, culturally sensitive, and ethically sound.

TRIAL REGISTRATION: ClinicalTrials.gov NCT03738098 . Registered on November 13, 2018 Trial Sponsor: Icahn School of Medicine at Mount Sinai Contact Name: Eimear Kenny, PhD (Principal Investigator) Address: Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., Box 1003, New York, NY 10029 Email: eimear.kenny@mssm.edu.

Pearson, Nathaniel M, Christian Stolte, Kevin Shi, Faygel Beren, Noura S Abul-Husn, Gabrielle Bertier, Kaitlyn Brown, et al. (2021) 2021. “GenomeDiver: a Platform for Phenotype-Guided Medical Genomic Diagnosis.”. Genetics in Medicine : Official Journal of the American College of Medical Genetics 23 (10): 1998-2002. https://doi.org/10.1038/s41436-021-01219-5.

PURPOSE: Making a diagnosis from clinical genomic sequencing requires well-structured phenotypic data to guide genotype interpretation. A patient's phenotypic features can be documented using the Human Phenotype Ontology (HPO), generating terms used to prioritize genes potentially causing the patient's disease. We have developed GenomeDiver to provide a user interface for clinicians that allows more effective collaboration with the clinical diagnostic laboratory, with the goal of improving the success of the diagnostic process.

METHODS: GenomeDiver uses genomic data to prompt reverse phenotyping of patients undergoing genetic testing, enriching the amount and quality of structured phenotype data for the diagnostic laboratory, and helping clinicians to explore and flag diseases potentially causing their patient's presentation.

RESULTS: We show how GenomeDiver communicates the clinician's informed insights to the diagnostic lab in the form of HPO terms for interpretation of genomic sequencing data. We describe our user-driven design process, the engineering of the software for efficiency, security and portability, and examples of the performance of GenomeDiver using genomic testing data.

CONCLUSION: GenomeDiver is a first step in a new approach to genomic diagnostics that enhances laboratory-clinician interactions, with the goal of directly engaging clinicians to improve the outcome of genomic diagnostic testing.

2020

Sato, Hanae, Robert H Singer, and John M Greally. (2020) 2020. “Quantitative Kinetic Analyses of Histone Turnover Using Imaging and Flow Cytometry.”. Bio-protocol 10 (17). https://doi.org/10.21769/bioprotoc.3738.

Dynamic histone changes occur as a central part of chromatin regulation. Deposition of histone variants and post-translational modifications of histones are strongly associated with properties of chromatin status. Characterizing the kinetics of histone variants allows important insights into transcription regulation, chromatin maintenance and other chromatin properties. Here we provide a protocol of quantitative and sensitive approaches to test the timing of incorporation and dissociation of histones using a two-color SNAP-labeling system, labelling pre-existing and newly-incorporated histones distinctly. Together with cell cycle synchronization methods and cell cycle markers, this approach enables a pulse-chase analysis to determine the turnover of histone variants during the cell cycle, detected using imaging or flow cytometry methods at single cell resolution. As well as testing global histone turnover, cell cycle-dependent cellular localization of histone variants can be also addressed using imaging approaches.

de Torrenté, Laurence, Samuel Zimmerman, Masako Suzuki, Maximilian Christopeit, John M Greally, and Jessica C Mar. (2020) 2020. “The Shape of Gene Expression Distributions Matter: How Incorporating Distribution Shape Improves the Interpretation of Cancer Transcriptomic Data.”. BMC Bioinformatics 21 (Suppl 21): 562. https://doi.org/10.1186/s12859-020-03892-w.

BACKGROUND: In genomics, we often assume that continuous data, such as gene expression, follow a specific kind of distribution. However we rarely stop to question the validity of this assumption, or consider how broadly applicable it may be to all genes that are in the transcriptome. Our study investigated the prevalence of a range of gene expression distributions in three different tumor types from the Cancer Genome Atlas (TCGA).

RESULTS: Surprisingly, the expression of less than 50% of all genes was Normally-distributed, with other distributions including Gamma, Bimodal, Cauchy, and Lognormal also represented. Most of the distribution categories contained genes that were significantly enriched for unique biological processes. Different assumptions based on the shape of the expression profile were used to identify genes that could discriminate between patients with good versus poor survival. The prognostic marker genes that were identified when the shape of the distribution was accounted for reflected functional insights into cancer biology that were not observed when standard assumptions were applied. We showed that when multiple types of distributions were permitted, i.e. the shape of the expression profile was used, the statistical classifiers had greater predictive accuracy for determining the prognosis of a patient versus those that assumed only one type of gene expression distribution.

CONCLUSIONS: Our results highlight the value of studying a gene's distribution shape to model heterogeneity of transcriptomic data and the impact on using analyses that permit more than one type of gene expression distribution. These insights would have been overlooked when using standard approaches that assume all genes follow the same type of distribution in a patient cohort.

Johnston, Andrew D, Alali Abdulrazak, Hanae Sato, Shahina B Maqbool, Masako Suzuki, John M Greally, and Claudia A Simões-Pires. (2020) 2020. “A Cellular Stress Response Induced by the CRISPR-DCas9 Activation System Is Not Heritable Through Cell Divisions.”. The CRISPR Journal 3 (3): 188-97. https://doi.org/10.1089/crispr.2019.0077.

The CRISPR-Cas9 system can be modified to perform "epigenetic editing" by utilizing the catalytically inactive (dead) Cas9 (dCas9) to recruit regulatory proteins to specific genomic locations. In prior studies, epigenetic editing with multimers of the transactivator VP16 and guide RNAs (gRNAs) was found to cause adverse cellular responses. These side effects may confound studies inducing new cellular properties, especially if the cellular responses are maintained through cell divisions-an epigenetic regulatory property. Here, we show how distinct components of this CRISPR-dCas9 activation system, particularly dCas9 with untargeted gRNAs, upregulate genes associated with transcriptional stress, defense response, and regulation of cell death. Our results highlight a previously undetected acute stress response to CRISPR-dCas9 components in human cells, which is transient and not maintained through cell divisions.

Rastogi, Deepa, Andrew D Johnston, John Nico, Lip Nam Loh, Yurydia Jorge, Masako Suzuki, Fernando Macian, and John M Greally. (2020) 2020. “Functional Genomics of the Pediatric Obese Asthma Phenotype Reveal Enrichment of Rho-GTPase Pathways.”. American Journal of Respiratory and Critical Care Medicine 202 (2): 259-74. https://doi.org/10.1164/rccm.201906-1199OC.

Rationale: Obesity-related asthma disproportionately affects minority children and is associated with nonatopic T-helper type 1 (Th1) cell polarized inflammation that correlates with pulmonary function deficits. Its underlying mechanisms are poorly understood.Objectives: To use functional genomics to identify cellular mechanisms associated with nonatopic inflammation in obese minority children with asthma.Methods: CD4+ (cluster of differentiation 4-positive) Th cells from 59 obese Hispanic and African American children with asthma and 61 normal-weight Hispanic and African American children with asthma underwent quantification of the transcriptome and DNA methylome and genotyping. Expression and methylation quantitative trait loci revealed the contribution of genetic variation to transcription and DNA methylation. Adjusting for Th-cell subtype proportions discriminated loci where transcription or methylation differences were driven by differences in subtype proportions from loci that were independently associated with obesity-related asthma.Measurements and Main Results: Obese children with asthma had more memory and fewer naive Th cells than normal-weight children with asthma. Differentially expressed and methylated genes and methylation quantitative trait loci in obese children with asthma, independent of Th-cell subtype proportions, were enriched in Rho-GTPase pathways. Inhibition of CDC42 (cell division cycle 42), one of the Rho-GTPases associated with Th-cell differentiation, was associated with downregulation of the IFNγ, but not the IL-4, gene. Differential expression of the RPS27L (40S ribosomal protein S27-like) gene, part of the p53/mammalian target of rapamycin pathway, was due to nonrandom distribution of expression quantitative trait loci variants between groups. Differentially expressed and/or methylated genes, including RPS27L, were associated with pulmonary function deficits in obese children with asthma.Conclusions: We found enrichment of Rho-GTPase pathways in obese asthmatic Th cells, identifying them as a novel therapeutic target for obesity-related asthma, a disease that is suboptimally responsive to current therapies.

2019

Nakahara, Fumio, Daniel K Borger, Qiaozhi Wei, Sandra Pinho, Maria Maryanovich, Ali H Zahalka, Masako Suzuki, et al. (2019) 2019. “Engineering a Haematopoietic Stem Cell Niche by Revitalizing Mesenchymal Stromal Cells.”. Nature Cell Biology 21 (5): 560-67. https://doi.org/10.1038/s41556-019-0308-3.

Haematopoietic stem cells (HSCs) are maintained by bone marrow niches in vivo1,2, but the ability of niche cells to maintain HSCs ex vivo is markedly diminished. Expression of niche factors by Nestin-GFP+ mesenchymal-derived stromal cells (MSCs) is downregulated upon culture, suggesting that transcriptional rewiring may contribute to this reduced HSC maintenance potential. Using an RNA sequencing screen, we identified five genes encoding transcription factors (Klf7, Ostf1, Xbp1, Irf3 and Irf7) that restored HSC niche function in cultured bone marrow-derived MSCs. These revitalized MSCs (rMSCs) exhibited enhanced synthesis of HSC niche factors while retaining their mesenchymal differentiation capacity. In contrast to HSCs co-cultured with control MSCs, HSCs expanded with rMSCs showed higher repopulation capacity and protected lethally irradiated recipient mice. Competitive reconstitution assays revealed an approximately sevenfold expansion of functional HSCs by rMSCs. rMSCs prevented the accumulation of DNA damage in cultured HSCs, a hallmark of ageing and replication stress. Analysis of the reprogramming mechanisms uncovered a role for myocyte enhancer factor 2c (Mef2c) in the revitalization of MSCs. These results provide insight into the transcriptional regulation of the niche with implications for stem cell-based therapies.

Kong, Yu, Deepa Rastogi, Cathal Seoighe, John M Greally, and Masako Suzuki. (2019) 2019. “Insights from Deconvolution of Cell Subtype Proportions Enhance the Interpretation of Functional Genomic Data.”. PloS One 14 (4): e0215987. https://doi.org/10.1371/journal.pone.0215987.

Cell subtype proportion variability between samples contributes significantly to the variation of functional genomic properties such as gene expression or DNA methylation. Although the impact of the variation of cell subtype composition on measured genomic quantities is recognized, and some innovative tools have been developed for the analysis of heterogeneous samples, most functional genomics studies using samples with mixed cell types still ignore the influence of cell subtype proportion variation, or just deal with it as a nuisance variable to be eliminated. Here we demonstrate how harvesting information about cell subtype proportions from functional genomics data can provide insights into cellular changes associated with phenotypes. We focused on two types of mixed cell populations, human blood and mouse kidney. Cell type prediction is well developed in the former, but not currently in the latter. Estimating the cellular repertoire is easier when a reference dataset from purified samples of all cell types in the tissue is available, as is the case for blood. However, reference datasets are not available for most other tissues, such as the kidney. In this study, we showed that the proportion of alterations attributable to changes in the cellular composition varies strikingly in the two disorders (asthma and systemic lupus erythematosus), suggesting that the contribution of cell subtype proportion changes to functional genomic properties can be disease-specific. We also showed that a reference dataset from a single-cell RNA-seq study successfully estimated the cell subtype proportions in mouse kidney and allowed us to distinguish altered cell subtype differences between two different knock-out mouse models, both of which had reported a reduced number of glomeruli compared to their wild-type counterparts. These findings demonstrate that testing for changes in cell subtype proportions between conditions can yield important insights in functional genomics studies.

Jaric, Ivana, Devin Rocks, John M Greally, Masako Suzuki, and Marija Kundakovic. (2019) 2019. “Chromatin Organization in the Female Mouse Brain Fluctuates across the Oestrous Cycle.”. Nature Communications 10 (1): 2851. https://doi.org/10.1038/s41467-019-10704-0.

Male and female brains differ significantly in both health and disease, and yet the female brain has been understudied. Sex-hormone fluctuations make the female brain particularly dynamic and are likely to confer female-specific risks for neuropsychiatric disorders. The molecular mechanisms underlying the dynamic nature of the female brain structure and function are unknown. Here we show that neuronal chromatin organization in the female ventral hippocampus of mouse fluctuates with the oestrous cycle. We find chromatin organizational changes associated with the transcriptional activity of genes important for neuronal function and behaviour. We link these chromatin dynamics to variation in anxiety-related behaviour and brain structure. Our findings implicate an immediate-early gene product, Egr1, as part of the mechanism mediating oestrous cycle-dependent chromatin and transcriptional changes. This study reveals extreme, sex-specific dynamism of the neuronal epigenome, and establishes a foundation for the development of sex-specific treatments for disorders such as anxiety and depression.